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ABSTRACT
Purpose To develop a QSAR model, based on calculated mo-
lecular descriptors and an Artificial Neural Networks Ensemble
(ANNE), for the estimation of rat tissue-to-blood partition coef-
ficients (Kt:b), as well as the assessment of the applicability domain
of the model and its utility in predicting the drug distribution in
humans.
Methods A total of 1460 individual Kt:b values (75% train and
25% validation), obtained in 13 different rat tissues were collected
in the literature. A correlation between simple molecular descrip-
tors for lipophilicity, ionization, size and hydrogen bonding capac-
ity and Kt:b data was attempted by using an ANNE.
Results Similar statistics were observed between the train and
validation group of data with correlations, between the observed
values and the predicted average ANNE values, of 0.909 and
0.896, respectively. A degradation of the correlations was ob-
served for predicted values with high uncertainty, as judged by the
standard deviations of the ANNE outputs. This was further ob-
servedwhen using the ANNE Kt:b values in a Physiologically based
pharmacokinetic (PBPK) model for predicting the Human Volume
of distribution of another 532 drugs.
Conclusions This model (available as a MS Excel® workbook in
the Supporting material of this article) may be a valuable tool for
prediction and simulation in early drug development, allowing the
in silico estimation of rat Kt:b values for PBPK purposes and also
indicating its applicability domain.

KEY WORDS Artificial Neural Networks . rat tissue-to-blood
partition coefficients . QSAR . PBPK . volume of distribution

INTRODUCTION

PBPK models are becoming increasingly used in the various
phases of the drug development process, as these may include
data from different origins in an integrated way, allowing the
simulation of the pharmacokinetic behaviour for mechanistic
interpretation (1). In silico, in vitro or in vivo data characterizing
any of the individual ADME single processes, may thus be
introduced in the drug related part of the PBPK models and,
by changing the physiologic parameters of these models, ex-
trapolations between different species may be obtained (2).

Within this context, tissue-to-blood partition coefficients
(Kt:b) in the different organs are fundamental parameters
that must be determined in order to describe the distribution
of the drug, and to simulate the concentration profiles for each
individual organ (3). Volume of distribution at steady-state
(Vss), which is defined as the proportionality factor that relates
the concentration of drug in the blood (or plasma) to the total
amount of drug in the body at steady state and is related to the
extent of drug distribution in the body, may be determined by
the sum of the products of Kt:b and the corresponding tissue
volume in addition to the blood volume (3). However, because
it is difficult to determine Kt:b values in man they are typically
determined in other mammals. To that end both in vitro (using
animal tissues homogenates) or in vivo approaches are available
(4), but these protocols are expensive, laborious, ethically
questionable and require the physical existence of the drug
molecule itself, which hinders its utilization in the early phases
of the drug development process.

To overcome some of these limitations, a number of ad-
vanced physiological models have been developed, which
utilize a combination of human in vitro measurements, physi-
cochemical data, and physiological data, such as tissue com-
position, to define tissue distribution, obviating the need for
animal data altogether (5–8). These models are being exten-
sively used with stimulating results but they still require the
physical existence of the drug molecule (9). It would be very
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appealing if these same parameters could be predicted based
only on computational models, and indeed some in silico
QSAR models are already available (10–12). However, these
models are based on a limited number of drugs or were built
based only on volatile organic compounds (VOC). Although
these models presented some interesting results, it is well
established that the performance of a QSAR model is highly
dependent on the experimental design and diversity of
compounds used (13), making the applicability of these avail-
able QSAR models of limited scope in the drug development
scenario.

In this paper we present the development of a QSAR
model for the in silico prediction of Kt:b values in 13 different
rat tissues obtained from different experimental approaches,
based on an artificial neural networks ensemble (ANNE).
Simple and easily calculated molecular descriptors were used.
Validation was performed both on a group of external Kt:b

data and also on the ability to predict the Vss in humans in a
large amount of drugs. The applicability domain was also
characterized based on the variability of the predicted values.
The final model is available as anMSExcel® workbook in the
Supporting material of this paper.

MATERIALS AND METHODS

Data Base of Rat Kt:b Values

The QSAR models were built based on the two datasets
described and characterized previously (14). Dataset 1 includ-
ed in vitro data on volatile and non-volatile compounds deter-
mined in 13 different rat tissues, and contains 143 compounds
(64.3% were VOCs) on a total of 657 Kt:b values. Dataset 2
consisted of in vivo derived data, also obtained in 13 different
rat tissues, and included a total of 196 compounds (8.7% were
VOCs) and 817 Kt:b values. It was previously reported that
in vitro and in vivo Kt:b values, although correlated, are statisti-
cally different (14,15). A statistically significant difference was
again observed between the different tissues, but good corre-
lations were also observed between several of them (14),
indicating that common distribution characteristics are ex-
pected in the different tissues for several drugs. As such, in
order to increase the applicability domain by using a larger
data base, in vitro and in vivo Kt:b values were both included in
the model by introducing an additional binary input to the
ANN having a value of zero for in vitro data and a value of one
for in vivo data. Four additional binary inputs were also includ-
ed in order to indicate the different rat tissues. These 4 bits
(half a byte, or a nibble) are able to represent 16 different
values/tissues. Values, from 1 to 13 were assigned to the
different tissues with no particular order, (e.g. from 1, 0, 0, 0
to describe the muscle to 1, 0, 1, 1 to describe the pancreas)
(Table I). The total data (nitric oxide and cyclosporine were

excluded due to impossibility to calculate the required molec-
ular descriptors and only 1460 of the available 1474 individual
Kt:b values were considered) were randomly split in a 75/25
ratio within each individual tissue between a train (n=1098
Kt:b values) and an external validation group of data (n=362
Kt:b values), not used in the QSARmodel building procedure.
For further validation, Vss values were also collected for
another 532 drugs (Vss Validation Data) from the work of
Obach et al. (16). These drugs were included neither in the
train nor in the external validation data. Since these Vss values
were determined in plasma, blood-to-plasma ratios were cal-
culated according to Paixão et al. (17) and used to transform to
blood Vss values the original plasma Vss values. These dataset
are available in the Supplementary material as supporting
data.

In Silico Calculation of the Molecular Descriptors

The following methodology was used for the calculation of the
in silico descriptors: SMILES notation of each molecule was
obtained using the on-line PubChem Compound database
(http://www.ncbi.nlm.nih.gov). Ionization descriptors
(pKaacid; pKabase) were predicted by using ChemAxon
(http://www.chemicalize.org). For drugs without an
ionisable acid group, a value of 15 was attributed to pKaacid.
For drugs without an ionisable basic group, a value of -1 was
attributed to pKabase. Lipophilicity (LogP) and intrinsic solu-
bility (LogS) were obtained using the on-line ALOGPS 2.1
program (18). The remaining descriptors, related to size,
hydrogen bonding potential, lipophilicity and others, were
obtained from the on-line E-Dragon 1.0 software using
CORINA to convert the SMILES notation to the 3D repre-
sentation of the molecule (19). Molecular descriptors were not

Table I Binary Repre-
sentation of the Different
Rat Tissues as Used in the
ANN Model

Tissue Binary selector

4 3 2 1

Muscle 0 0 0 1

Bone 0 0 1 0

Brain 0 0 1 1

Heart 0 1 0 0

Intestine 0 1 0 1

Skin 0 1 1 0

Lungs 0 1 1 1

Spleen 1 0 0 0

Adipose 1 0 0 1

Liver 1 0 1 0

Kidney 1 0 1 1

Stomach 1 1 0 0

Pancreas 1 1 0 1
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possible to calculate for nitric oxide and cyclosporine, and
these two molecules were removed from the dataset.

ANNE Optimization

The Artificial Neural Network (ANN) non-linear regression
was performed using the backpropagation neural modelling
system Qnet for Windows v.2000 build 751 (Vesta Services
inc., USA) and an in-house developedMicrosoft Excel® VBA
procedures for process automation. Both the in silicomolecular
descriptors and the binary descriptors for experimental pro-
tocol and tissue characterization were included as model
inputs. Kt:b values (log transformed) were introduced in the
ANN as the model output. In order to allow the calculation of
the relative relevance of the used molecular descriptors, all
networks were built using normalised variables both at the
input and output, and a sigmoid transfer function was used in
all connections. Early stopping of training was used in order to
prevent over fitting (20). For that, 25% of the train molecules
were randomly selected to act as a sub-set for the internal
testing of the model, not effectively used in the regression
process, and ANN train was performed until degradation on
the RMSE for the internal test data was observed.
Additionally, each network was started 20 times, with random
initial values and different sub-sets of the internal test cases, to
minimize training convergence to local minima.

Network optimization was performed in a three-step pro-
cess. The first step consisted of the reduction of the molecular
descriptors space. This was done by removing highly corre-
lated (r>0.90) molecular descriptors, allowing the removal of
the redundant ones, which contained information already
within another descriptor. The second step consisted of the
optimisation of the network structure for the most relevant
molecular descriptors. Several ANN’s structures were tested,
varying the number of hidden layers (up to three) and the
number of hidden neurons in order to obtain a ratio between
the number of patterns (832 logKt:b values effectively used in
the training) to the number of connections above 1. Finally,
after the optimization of the selected structures, and based on
the RMS of the internal test data, the 10 best ones were
selected in order to obtain the final QSAR ANNE model. A
MS Excel workbook (Tiblisi - Tissue to Blood drug partition
in-silico prediction) was developed and made available in the
Supplementary material that allows the calculation of the Kt:b

values.

ANNE Validation

External validation was done by comparing the values pre-
dicted by the ANNE to the observedKt:b values of the drugs in
the external validation group of data, not previously used in
the training and optimization process. In addition, validation
was also tested by assuming that rat and humanKt:b values are

similar and evaluating the ability to predict the Human
blood Vss in the 532 drugs of the Vss Validation Data
by including the tissue Kt:b values calculated by the
ANNE models in the following Physiologically Based
equation,

V human
ss ¼ V human

blood þ
X

i¼1

n

K Rat
t:b ið Þ � V human

tissue ið Þ
� �

þ K Rat
t:b averageð Þ � V human

tissue remainingð Þ

ð1Þ

where Vblood
human is the volume of blood in the human (5.53 L), Kt:

b(i)
Rat are the different tissue-to-blood distribution coefficients

in the rat calculated for each drug, Vtissue(i)
human are the correspond-

ing tissue physiological volumes according to Brown at al. (21)
and K t :b(average)

Rat is the average of the available K t :b(i)
Rat values

weighted by the corresponding V tissue(i)
human values. Finally Vtissue(-

remaining)
human is the remaining tissue value not described by the

available sum of V tissue(i)
human , that considering the 13 tissues de-

scribed by the ANNE model only accounts for 3.8% of the
total Human volume of 79.3 L.

Applicability Domain

In order to try to establish the applicability domain, the
accuracy and variability of predicted values under the
ANNE were calculated. This was performed by predicting
each case in both the train and external validation data sets
using the 10 best ANN models, one at a time. Average and
standard deviation (SD) of each predicted case (molecule)
were then calculated. In order to see if the applicability
domain could be defined based on the variability of the
predictions, drugs in the train and test sets were divided into
8 classes of increasing ANNE prediction SD, and the average

squared error of prediction APE ¼ ∑ Yi−yi
� �2

=n
� �

was cal-

culated within each such block.
In addition, we also studied the effect of this prediction

variability on the ability to correctly predict the Human blood
Vss in the 532 drugs of the Vss Validation Data. In this case,
and because the final Vss value is the result of multiple tissue
predictions with different tissue weights according to Eq. 1),
the individual prediction errors were included in the variabil-
ity of the final determination as follows:. since each tissue
logKt:b can be characterized as a±σa, the standard deviation
on Kt:b was calculated as σb=2.303×σa×10a. By conse-
quence, since Vss is determined by Eq. 1, the final standard
deviation value, due to the error propagation, can be approx-

imated to σVss ¼
ffiffiffiffiffiffiffiffiffi
∑
i¼1

13
r

VHuman
tissue ið Þ � σb

� �2
. This allows the

estimation of the variability coefficient of the Vss prediction
as CV(%)=100×σVss/Vss. Again, data was sorted by ascend-
ing values of CV(%), divided into 8 classes, and again the APE
was calculated within each such class.
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RESULTS

ANNE Optimization

Optimization of the ANNmodel was done as described under
methods. Regarding the reduction of the molecular descrip-
tors space, the identification of correlated descriptors allowed
the removal of fourmolecular descriptors, namely the number
of H-bond donors and acceptors, the molar refractivity and
total topological polar surface area. The final inputs included
in the modelling process are described in Table II, and in-
cluded a set of 8 molecular descriptors, 1 binary discriminator
for the experimental protocol (in vitro vs in vivo) and 4 binary
discriminators for the different tissues.

Based on these descriptors, a network structure optimiza-
tion was pursued using a brute force approach. In order to
maintain a practical computational time, the network archi-
tectural space was swept between 1 and 3 hidden layers. The
number of hidden neurons by layer was also changed taking
into consideration the ratio between the number of patterns to
the number of connections. This ratio was maintained above
1 in order to reduce the ability of the network to memorise the
data and avoid over-fitting (22,23). Since a large number of
structures were possible (>1500) and in order to make the
computational time reasonable, a random sub-set of 100
structures was selected for optimization. Each structure was
randomly started 20 times, to identify convergence to local
minima, and trained until degradation on the RMSE for the
internal test data was observed to avoid over-fitting. The
overall performance of the optimization procedure can be
seen on Fig. 1. The 10 best individual networks in terms of
the lowest test RMSEwere kept. These were grouped in order
to provide the final predictions of LogKt:b, (Fig. 2, Table III)
allowing also the determination of the prediction variability

itself. Similar statistics are observed when data is grouped by
experimental protocol or by different tissues, indicating that
the overall adjustment was not unbalanced within the differ-
ent data origins (table S1 and S2 in supplementary material).
It is also observed that, parallel to the increase in the predic-
tion variability, an incremental trend is also obtained in the
APE (Fig. 3), indicating that the ANNE variability in the
predictions could serve as a rationale for the establishment
of the applicability domain. Based on this trend, a RMSE of
around 0.3 was observed for a SD cut-off value of 0.2 and the
overall statistics within these two groups of data is also pre-
sented in Table III. Results can be replicated by using the
Tiblisi Excel VBA macro, available in the paper
Supplementary material. ANNE results and individual ANN

Table II Summary of the 13 In-
puts Used in the ANNE Model,
Including 8 Molecular Descriptors
and 5 Binary Selectors

No. Inputs Description

Type Name

1 Molecular descriptors pKa (basic) pKa of the strongest basic group

2 pKa (acid) pKa of the strongest acid group

3 MW Molecular weight

4 Ui Unsaturation índex

5 Hy Hydrophilicity índex

6 TPSA(NO) Topological Polar Surface Area (including N and O)

7 logP ALOGPS 2.1 calculated LogP

8 logS ALOGPS 2.1 calculated intrinsic solubility

9 Binary selectors IV/IV Binary selector for in vitro (0) or in vivo (1) original data

10 1 Binary Selectors for the different rat tissues
11 2

12 3

13 4

Fig. 1 Performance, measured in terms of the train and internal test RMSE,
for the 100 individual ANN during the optimization procedure. Complexity of
each individual ANN is described by the ratio between the number of
patterns to the number of connections (r).
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structures are also made available in the supporting excel data
file on the Supplementary material to the paper.

ANNE Validation and Applicability Domain

The ability of the ANNE to predict the Log Kt:b for new cases
was initially tested in the 369 Kt:b values of the external
validation data not used in the training process. As can be
seen (Table III and Fig. 4) good agreement was observed with
the statistics of the train data, indicating that no significant
over-fitting was obtained. Again, it was observed an increase
in the APE (Fig. 5) following the increase in the ANNE
prediction variability, as measured in terms of SD. Splitting
the data based on the SD cut-off value of 0.2 resulted in a
degradation of the prediction statistics (Table III), indicating
that this could be a rationale for the establishment of the
applicability domain.

An additional external validation was done by testing the
ability to predict the blood Vss for another 532 drugs of the

Vss Validation Data. Predicted values for the 13 different rat
tissues, assuming an in vivo experimental protocol (ANN input
#9=1), were obtained by the ANNE as well as the SD for each
tissue. These values were used to predict the blood Vss ac-
cording to Eq. 1) as well as the CV% associated to each Vss
prediction. The prediction results, from the total data and by
groups of similar CV%, are presented in Table IV and Fig. 6.
Figure 7 also presents the variation in APE with the increase in
the CV(%) of the predictions itself. As can be seen, more
accurate results are obtained when the estimated CV% pre-
sents lower values, which again indicates that the variability of
the predicted values from the ANNE can be used to evaluate
the applicability domain of the QSAR model.

Fig. 2 Plot of the in vitro/in vivo observed Log Kt:b vs. in silico predicted Log
Kt:b values for the ANNE model on the training dataset. Solid line represents
the line of unity and the dashed-lines the ±3-fold tolerance value.

Table III Statistical Evaluation of the Performance of the ANNE Model to
Predict Log Kt:b Values for the Train and External Validation Data

Train data External validation data

Total SD<0.2 SD>0.2 Total SD<0.2 SD>0.2

r 0.909 0.911 0.886 0.896 0.899 0.859

ME 0.004 0.004 0.000 −0.023 −0.033 0.021

RMSE 0.304 0.294 0.375 0.322 0.307 0.380

n 1098 978 120 362 291 71

r correlation coefficient; ME mean error; RMSE root mean square error; n
number of predicted values

Fig. 3 Plot of the average squared error of prediction (APE) against the
average SD on the training dataset divided into 8 classes of increasing ANNE
prediction SD.

Fig. 4 Plot of the in vitro/in vivo observed Log Kt:b vs. in silico predicted Log
Kt:b values for the ANNE model on the external validation dataset. Solid line
represents the line of unity and the dashed-lines the ±3-fold tolerance value.
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DISCUSSION

There has been a hot debate about the utility of QSAR
models during drug development, since sometimes a lack of
predictability is observed (13,24–26). Data quality and
training sample size are known to greatly influence the
reliability of the QSAR models (13). Proper methodologies
during model development are also very important and it has
been proposed, in the case of ANN, that some basic issues
should be addressed with caution, namely (i) Had the network

converged to the global minimum or a local minimum? (ii)
Was there a quantifiable metric to describe the network’s
“memory” or data retention? (iii) Was the network making
use of the right set of input parameters for the problem
domain? (iv) How will the network handle situations when
presented data is outside the training set domain or unique
from previous training data? (27,28)

We have previously presented a compilation of rat Kt:b

data obtained both in vitro and in vivo in 13 different tissues for a
total of 309 different drugs (14). The number of individual

Fig. 5 Plot of the average squared error of prediction (APE) against the
average SD on the external validation dataset divided into 8 classes of
increasing ANNE prediction SD.

Table IV Statistical Evaluation of the Performance of the ANNE Model to
Predict the Human Log Vss (L/Kg) on the Vss ValidationDataset, by Using an in
silico – PBPK Approach. Data is Grouped in Terms of Variability on the
Predictions and Compared to the Performance Reported Using a Similar
in vitro/in vivo – PBPK Approach

Observeda Predictedb

In vitro In vivo Total CV%

0–20 20–40 40–60 > 60

% < 2-fold 56.7 62.1 43.0 55.6 38.4 28.6 11.1

% < 3-fold 70.0 79.3 61.7 74.7 57.6 50.0 14.8

% < 5-fold 80.0 88.5 75.9 87.1 75.4 57.1 29.6

% < 10-fold 93.3 94.3 89.3 96.4 90.2 80.4 51.9

ME 0.088 0.181 0.247 0.111 0.275 0.470 0.692

RMSE 0.484 0.429 0.604 0.458 0.597 0.779 1.106

r 0.648 0.768 0.532 0.687 0.590 0.360 −0.441

n 30 87 532 225 224 56 27

%< (2,3,5,10)-fold percentage of drugs well predicted within the defined fold
error; ME mean error; RMSE root mean square error; r correlation coeffi-
cient; n number of predicted values
a Vss predictions based on experimental Kt:b as reported on (14)
b Vss predictions based on ANNE - predicted Kt:b

Fig. 6 Plot of the in vivo observed vs. in silico PBPK prediction of the human
Log Vss (L/kg) values for the ANNE model on the Vss validation dataset. Data
is grouped in terms of variability (CV%) on the predictions. Solid line repre-
sents the line of unity and the dashed-lines the ± 3-fold tolerance value (a
colour version of figure 6 is provided in the supplementary material as
figure S3).

Fig. 7 Plot of the average squared error of prediction (APE) against the
average variability (CV%) of the predicted in silico PBPK human Log Vss (L/kg)
values on the Vss validation dataset divided into 8 classes of increasing PBPK
prediction CV%.

3318 Paixão, Aniceto, Gouveia and Morais



Kt:b values varied from 253 cases in the muscle to 19 in the
stomach, totalling 1474 Kt:b determinations in all the 13
tissues. These values were obtained both by using in vitro tissue
homogenates (657 Kt:b values) or in vivo PK experiments (817
Kt:b values). It was also observed that there were statistically
significant differences between tissues and experimental
protocols (14). Abraham et al. (12) reported that although
statistically significant differences between in vitro and in vivo
distribution of VOC from air to muscle were observed in their
data, they were able to combine the VOC and drug data by
incorporating a new indicator variable in their QSARmodels,
defined as 1 for the in vitro data and 0 for the in vivo data. This
resulted in a final QSAR model with similar statistics to the
individual models using separated datasets, but with increased
applicability domain. We had also observed distribution dif-
ferences between experimental protocols and rat tissues,
which could hinder the development of QSAR models for
some tissues, where data was limited in number implying that
a small applicability domain would be obtained. In order to
overcome this issue, since the same “general” distribution
characteristic was being quantified in the different
protocols/tissues and several similarities were expected to exist
between them, we combined the total available data by in-
cluding additional binary variables to classify the data origin
itself. For the tissues, and since these totalled 13 different
tissues, 4 binary variables were used (Table I). This approach
allowed to model these 26 different combinations using a
reduced set of only 5 inputs, with obvious gains in terms of
network complexity and computational time.

ANNE Optimization, Validation and Applicability
Domain

Optimization of the neural networks was done as reported in
methods. Data was initially divided into a train (75%) and an
external validation (25%) dataset. Since the creation of the
external validation group is known to be of paramount im-
portance in the validation of the QSAR methods (26), the
creation of these two groups of data was made by randomly
selected cases in a 75/25 ratio within each individual tissue, in
order to obtain a balanced distribution of data between the
two datasets. During the model optimization procedure, and
in each individual training step, the train data was again
divided randomly into an actual train dataset and an internal
test dataset again in a 75/25 ratio, aiming at every individual
Kt:b value being used in the training procedure at least once.
This was done in order to allow the early-stop of the
optimization, by training until a degradation of the RMSE
in the internal validation data was observed. It is assumed that
the generalization error decreases in an early period of
training, reaches a minimum and then increases as training
goes on, while the training error monotonically decreases.
Therefore, in early stopping, it is considered better to stop

training at an adequate time (29). However, the real situation
is a lot more complex with generalization curves having al-
most always more than one local minimum (30). Due to this
fact, each network was run for an excessive number of itera-
tions, and the iteration that resulted in the lowest residual
mean square error (RMSE) of the testing group was kept. In
addition, each of the selected ANN structures was started 20
times with random initial values, in order to sweep the pa-
rameters space and avoid convergence to local minima. As
can be seen in Fig. 1, RMSE of the train datasets, within each
individual structure, after optimization varied between 0.242
and 0.287. The same RMSE of the internal validation
datasets varied between 0.265 and 0.301. For the ANNE, a
group of 10 structures with the lowest RMSE of the internal
validation datasets (ranging from 0.265 to 0.280) were finally
selected. Early stop has shown to be an effective procedure to
decrease the generalization error when the number of training
cases is similar to the number of modified parameters (29).
Similarity between the RMSE of the test and internal valida-
tion groups seems to confirm this and indicates that indeed
overtraining and memorization was avoided (Fig. 1). The
small range of optimal RMSE between the different structures
also seems to indicate that local minima were avoided by the
use of the different initial optimization parameter values.

The performance of the ANNE is presented in Table III
and Figs. 2 and 4. As can be seen, statistics of the total train
and external test groups of data are very similar, with RMSE
around 0.3 and ME around 0. It has previously been estimat-
ed that the inter-laboratory standard deviation on brain Kt:b

would be around 0.20–0.25 log units (15). Based on this, and
according to Kramer et al. (31), the maximum Pearson corre-
lation coefficient achievable would be around 0.93–0.96,
which indicates that our models are not over-fitted and very
close to the best possible fit for the error in the data. Similar
statistics are observed when data is evaluated separately by
experimental protocol or by individual tissues (tables S1 and
S2 in supplementary material).

Probably the simplest approach for an initial indication on
the applicability domain is looking at the range of the individ-
ual descriptors used in the model building procedure. This
has, however, several limitations especially when non-linear
relationships are involved. ANNs, due to their flexible nature,
are able to address complex and non-linear relationships
between the input variables in order to relate them to the
modelled output, resulting in low bias models. It is also known
that an over-trained ANNmay be prone tomemorization and
inability to predict new cases, resulting in high variance
models. Although our training procedure consisted in a
bias/variance trade-off methodology, it is expected that ex-
trapolations (model predictions for drugs that are significantly
different from the ones used in the training) would result in
significantly different output results within the optimized
individual networks and, as a rule of thumb, the larger the
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standard deviation of the predictions, the greater the chance
that the molecule is outside the applicability domain, making
the prediction less reliable. As such, and in order to establish
an improved method for the applicability domain
determination, an approach based on the standard deviation
of the ensemble model prediction (32) was pursued. As can be
seen in Figs. 3 and 5 referring to both the train and external
test groups, the increase in the SD of the ANNE output results
allowed differentiating compounds with larger prediction
errors.

ANNE Interpretation

The input parameters used in the ANN were empirically
selected based on previous studies on drug distribution in
tissues (6,14,33) and are presented in Table II. The ionization
of drugs, characterized by both the pKa of the strongest acid
and basic groups, is known to influence the drug’s tissue
distribution. A different distribution mechanism between
strong bases and the remaining types of molecules has been
described (6,7). It has also been shown that the extent of
ionization is inversely related to the drug distribution in the
tissues, by influencing the drug lipophilicity (33). The
Molecular weight (MW), has been shown to have a positive
contribution when extrapolating Vss values from animal to
human (34), but it is also known to have an unfavourable
impact, for example, on the distribution of drugs through the
blood–brain barrier (35). In our database, MW was highly
correlated with the molar refractivity (AMR). The
unsaturation index (Ui) represents the presence of multiple
bonds in molecules (36). It is also a representation of the
flexibility of the molecules, and influences the paracellular
passage across membranes (37). The hydrophilicity index
(Hy) is a simple empirical index related to hydrophilicity of
compounds based on count descriptors (36). In our database it
was highly correlated with the number of H-donor bonds
(nHdon). Hydrogen-bonding causes an association of mole-
cules forming large aggregates of single molecules. In addition
it has consequences on the solubilization of molecules both in
water and in lipids. Topological polar surface area (tPSA) is
defined as the part of the surface area of the molecule associ-
ated with oxygen, nitrogen and the hydrogen bonded to any
of these atoms. This surface descriptor is also related to the
hydrogen-bonding ability of compounds, and it has been
suggested that PSA, in some way, describes the desolvation
of a compound as it moves from an aqueous to a lipid
environment (38). It is frequently used as a molecular descrip-
tor for permeability in biological membranes (39), which may
indicate that for high PSA values, drugs tend to remain
solvated with water and not to be able to cross the cell
membranes. In our database (14), tPSA was highly correlated
with the total topological polar surface area and with the
number of H-bond acceptors (nDacc) in the molecules, as

expected. LogP is the calculated measure of the partitioning
of a compound between a lipid (1-octanol) and an aqueous
phase that depends on solute bulk, polar and hydrogen-
bonding effects for a molecule in its neutral form (18). The
importance of LogP is well described in tissue distribution and
is on the basis of several physiological methods (9) being, by
itself, a good descriptor for distribution in the adipose tissue
(5). Finally LogS, the calculated intrinsic solubility, refers to
the ability for a given substance to dissolve in water (40). Since
the distribution in tissues depends on equilibrium between
aqueous, lipid and other cellular components, it was also
included in the calculations.

Due to the “black-box” nature of ANN models, its
interpretation is frequently described as difficult, but one
possible approach to obviate this drawback is to find how
input trends influence the output predictions, by
determining the relative importance of each input on that
particular output. This was done by varying each input at a
time, considering all the others constant with themedian value
for the corresponding descriptor, and evaluating the change in
the output response. As can be seen in Fig. 8, where the
relative importance of each input is depicted for each
individual tissue, different trends of the molecular descriptors
are seen in the distribution for the different rat tissues. This
analysis also shows that there is no single descriptor able to
characterize the individual tissues distribution, as pointed out
previously (14). This seems to confirm the initial consider-
ations that ionization, lipophilicity, hydrogen bonding poten-
tial and size are all important determinants of drug
distribution.

Fig. 8 Relevance of each molecular descriptor in the prediction of log Kt:b by
the ANNE, obtained by cycling each input for all training patterns and
computing the effect on the network’s output response at a time, for each
individual tissue.
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For an additional evaluation of the predictability of the model,
predictions on the various tissues were included in a PBPK
model for estimation of the blood volume of distribution in an
additional group of 532 drugs not previously used in the
model building procedure. Its results are presented in
Table IV and Fig. 6. Although different drugs were consid-
ered, statistics reported for the same approach but based on
in vitro or in vivo derived Kt:b data (14) are also included in
Table IV for comparison purposes. As can be seen, QSAR
prediction statistics including all available cases are worse than
the ones reported for the experimental derived data.
However, it is again visible that prediction performance de-
grades when the model predictions increase their internal
variability (Fig. 7). As such, when the CV% of the Vss predic-
tions is below 20%, it is possible to see (Table IV) that the
predictive statistics are superior to the ones observed by using
Kt:b values obtained by in vitro experiments with tissue homog-
enates and almost as good as the prediction on Vss using Kt:b

values determined by in vivo PK rat studies (14). These predic-
tions clearly degrade for CV% larger than 20% reaching a
point of absolute lack of predictability for CV% larger than
60%, where the majority of the drugs are large to very large
molecules (MW>500) and/or with high TPSA values
(>180A). These were sparse in the training set of data, indi-
cating again that the ANNE predicted variability can be used
as an indicator of the applicability domain.

Because the assumptions underlying the QSAR model or
PBPK modelling do not take into consideration specific PK
features, such as active transport and/or extensive blood
distribution, eight drugs presenting higher than 10-fold errors
when the CV% of the Vss predictions is below 20% (expect-
ably inside the applicability domain), were further considered
on a closer analysis, as follows: (1) for 3 drugs (diazoxide,
propylthiouracil and azapropazone), we see that probably a
high Rb value was predicted with consequences on the esti-
mation of the in vivo blood Volume of distribution. On the
contrary, for cladribine, and since this drug is rapidly taken up
and phosphorylated by lymphoid and myeloid cells (41), Rb
may have been under predicted. (2) Hydroxychloroquine is
also a drug with high blood distribution, which can be a
confounding factor in the overall model. (3) Two other cases,
tamsulosin and 7-hydroxystaurosporine, are drugs that are
highly bound to plasma but mainly to α1-acid glycoprotein.
Our ANNE model is based on total blood-to-tissue ratios and
since α1-acid glycoprotein is only 1 to 3% of the total plasma
protein and susceptible to saturation and displacement, its
relevance on the drug distribution may not have been well
captured by the QSAR model itself. (4) Finally, rosuvastatin is
a OATP1B1 substrate and inhibition of its uptake in the liver
results in the reduction of the Volume of distribution (42). As
stated, active transport processes were not considered, either

in the QSAR model or in the PBPK modelling for Vss, as a
distribution mechanism. Even so, and although these
expected limitations exist, the ANNE model is capable to
produce good estimations on the rat tissue distribution when
inside its applicability domain.

In a recent report, Jones et al. (9) presented an evaluation on
the ability for various types of methods to predict the human
Vss. Among others, they focused on whole-body
physiologically based models. These were all variants of the
equations originally presented by Poulin and Theil (5),
Rodgers et al. (6), and Rodgers and Rowland (7) and dispense
with the need for in vivo data by estimating the extent of tissue
distribution from the physicochemical and in vitro plasma
protein binding characteristics of the compound. By testing
a group of 18 blinded compounds, they concluded that the
variation from Berezhkovskiy (8) produced the best results
with an r of 0.83, a RMSE of 0.61. Predictions of the observed
Vss were 89, 72 and 61% percent of the times correctly
estimated within a tenfold, threefold, and twofold error, re-
spectively. These results are very close to the ones obtained
with our QSAR model when inside its applicability domain,
with the obvious advantage that, since our ANNE relies only
on calculated molecular descriptors, it is useable in the early
pre-clinical development phase of drug discovery. These re-
sults may be further improved if more data on rat Kt:b values is
made available and used in future training procedures.
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